Tactical Decision Making for Lane Changing with Deep Reinforcement Learning

نویسندگان

  • Mustafa Mukadam
  • Akansel Cosgun
  • Alireza Nakhaei
  • Kikuo Fujimura
چکیده

In this paper we consider the problem of autonomous lane changing for self driving cars in a multi-lane, multi-agent setting. We present a framework that demonstrates a more structured and data efficient alternative to end-to-end complete policy learning on problems where the high-level policy is hard to formulate using traditional optimization or rule based methods but well designed low-level controllers are available. The framework uses deep reinforcement learning solely to obtain a high-level policy for tactical decision making, while still maintaining a tight integration with the low-level controller, thus getting the best of both worlds. This is possible with Q-masking, a technique with which we are able to incorporate prior knowledge, constraints and information from a low-level controller, directly in to the learning process thereby simplifying the reward function and making learning faster and efficient. We provide preliminary results in a simulator and show our approach to be more efficient than a greedy baseline, and more successful and safer than human driving.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elements of Effective Deep Reinforcement Learning towards Tactical Driving Decision Making

Tactical driving decision making is crucial for autonomous driving systems and has attracted considerable interest in recent years. In this paper, we propose several practical components that can speed up deep reinforcement learning algorithms towards tactical decision making tasks: 1) nonuniform action skipping as a more stable alternative to action-repetition frame skipping, 2) a counterbased...

متن کامل

Automated Speed and Lane Change Decision Making using Deep Reinforcement Learning

This paper introduces a method, based on deep reinforcement learning, for automatically generating a general purpose decision making function. A Deep Q-Network agent was trained in a simulated environment to handle speed and lane change decisions for a truck-trailer combination. In a highway driving case, it is shown that the method produced an agent that matched or surpassed the performance of...

متن کامل

Reconciling strategic and tactical decision making in agent-oriented simulation of vehicles in urban traffic

We consider an integrated decision making process of autonomous vehicles in agent-oriented simulation of urban traffic systems. In our approach, the planning process for a vehicle agent is separated into two stages: strategic planning and tactical planning. During the strategic planning stage the vehicle agents constructs the optimal route from source to destination; during the tactical plannin...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Deep Reinforcement Learning Solutions for Energy Microgrids Management

This paper addresses the problem of efficiently operating the storage devices in an electricity microgrid featuring photovoltaic (PV) panels with both shortand long-term storage capacities. The problem of optimally activating the storage devices is formulated as a sequential decision making problem under uncertainty where, at every time-step, the uncertainty comes from the lack of knowledge abo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017